• Yolla Sukma Handayani Universitas Bina Bangsa
  • Bambang Setyo Panulisan yollasukmahandayani2@gmail.com
  • Dedy Khaerudin Universitas Bina Bangsa




solar cells, perovskite, MAPbI3, power conversion efficiency, photovoltaics, sel surya, perovskit, MAPbI3, efisiensi konversi daya, fotovoltaik


The increasing for energy need encourages all parties to develop alternative energy sources with the concept of renewable energy, which utilizes resources that are always available in nature, such as sunlight energy. The device that can convert sunlight into electrical energy is a solar cell. In this research, solar cells were made based on the MAPbI3 perovskite material as an active material which functions as an absorber to absorb photons of sunlight. The solar cell device was fabricated with the FTO/c-TiO2/mp-TiO2/MAPbI3/PTAA/Au device structure using the OSPD-FDC (one step precursor deposition-fast deposition crystallization) method. The UV-Vis characterization results show that the absorption area of MAPbI3 starts from the wavelength range of 325 nm to 800 nm and shows the presence of an absorption band edge which is a special characteristic of perovskite materials. Meanwhile, characterization of photovoltaic properties produces a power conversion efficiency value of 13% with Jsc, Voc and FF values of 23 mA/cm2, 1.1 V, and 54% respectively


Bello, S., Urwick, A., Bastianini, F., Nedoma, A. J., & Dunbar, A. (2022). An introduction to perovskites for solar cells and their characterisation. Energy Reports, 8, 89–106. https://doi.org/10.1016/j.egyr.2022.08.205

Choi, J. J., Yang, X., Norman, Z. M., Billinge, S. J. L., & Owen, J. S. (2014). Structure of methylammonium lead iodide within mesoporous titanium dioxide: Active material in high-performance perovskite solar cells. Nano Letters, 14(1), 127–133. https://doi.org/10.1021/nl403514x

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. https://doi.org/10.1021/ja809598r

Ma, X. X., & Li, Z. S. (2018). Substituting Cs for MA on the surface of MAPbI3 perovskite: A first-principles study. Computational Materials Science, 150(April), 411–417. https://doi.org/10.1016/j.commatsci.2018.04.042

Olaleru, S. A., Kirui, J. K., Wamwangi, D., Roro, K. T., & Mwakikunga, B. (2020). Perovskite solar cells: The new epoch in photovoltaics. Solar Energy, 196(November 2019), 295–309. https://doi.org/10.1016/j.solener.2019.12.025

Park, N. G. (2015a). Perovskite solar cells: An emerging photovoltaic technology. Materials Today, 18(2), 65–72. https://doi.org/10.1016/j.mattod.2014.07.007

P., Sih Setyono, J., Hari Mardiansjah, F., Febrina Kusumo Astuti, M., PrSoedarto, J. S., Tembalang, K. Jurnal Riptek (Vol. 13, Issue 2). http://riptek.semarangkota.go.id

Rahman, A. Z. M. S. (2016). Solid State Luminescent Materials: Applications. In Reference Module in Materials Science and Materials Engineering. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-803581-8.04078-9

Sharmoukh, W., Al Kiey, S. A., Ali, B. A., Menon, L., & Allam, N. K. (2020). Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, 26, e00210. https://doi.org/10.1016/j.susmat.2020.e00210

Wali, Q., Iftikhar, F. J., Khan, M. E., Ullah, A., Iqbal, Y., & Jose, R. (2020). Advances in stability of perovskite solar cells. Organic Electronics, 78(February 2019), 105590. https://doi.org/10.1016/j.orgel.2019.105590

Xu, X., Chen, Q., Hong, Z., Zhou, H., Liu, Z., Chang, W. H., Sun, P., Chen, H., Marco, N. De, Wang, M., & Yang, Y. (2015). Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 15(10), 6514–6520. https://doi.org/10.1021/acs.nanolett.5b02126




How to Cite

Handayani, Y. S. ., Panulisan, B. S. ., & Khaerudin, D. . (2024). FABRIKASI SEL SURYA BERBASIS MATERIAL PEROVSKIT MAPbI3 SEBAGAI SUMBER ENERGI TERBARUKAN. National Conference on Applied Business, Education, &Amp; Technology (NCABET), 3(1), 364–372. https://doi.org/10.46306/ncabet.v3i1.133